13 research outputs found

    Investigation of the chemical vapor deposition of Cu from copper amidinate through data driven efficient CFD modelling

    Get PDF
    peer reviewedA chemical reaction model, consisting of two gas-phase and a surface reaction, for the deposition of copper from copper amidinate is investigated, by comparing results of an efficient, reduced order CFD model with experiments. The film deposition rate over a wide range of temperatures, 473K-623K, is accurately captured, focusing specifically on the reported drop of the deposition rate at higher temperatures, i.e above 553K that has not been widely explored in the literature. This investigation is facilitated by an efficient computational tool that merges equation-based analysis with data-driven reduced order modeling and artificial neural networks. The hybrid computer-aided approach is necessary in order to address, in a reasonable time-frame, the complex chemical and physical phenomena developed in a three-dimensional geometry that corresponds to the experimental set-up. It is through this comparison between the experiments and the derived simulation results, enabled by machine-learning algorithms that the prevalent theoretical hypothesis is tested and validated, illuminating the possible underlying dominant phenomena

    POROUS SURFACES FOR DROPLET ACTUATION AND MOBILITY MANIPULATION USING BACKPRESSURE

    Get PDF
    In this study we explore the underlying mechanisms of droplet actuation and mobility manipulation, when backpressure is applied through a porous medium under a sessile pinned droplet. Momentum conservation and continuity equations along with the Cahn-Hilliard phase-field equations in a 2D computational domain are used to shed light on the on the droplet actuation and movement mechanisms. The droplet actuation mechanism entails depinning of the receding contact line and movement, by means of a forward wave propagation reaching on the front of the droplet. Eventually, the droplet is skipping forward

    Projective and Coarse Projective Integration for Problems with Continuous Symmetries

    Full text link
    Temporal integration of equations possessing continuous symmetries (e.g. systems with translational invariance associated with traveling solutions and scale invariance associated with self-similar solutions) in a ``co-evolving'' frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with the evolving solution) leads to improved accuracy because of the smaller time derivative in the new spatial frame. The slower time behavior permits the use of {\it projective} and {\it coarse projective} integration with longer projective steps in the computation of the time evolution of partial differential equations and multiscale systems, respectively. These methods are also demonstrated to be effective for systems which only approximately or asymptotically possess continuous symmetries. The ideas of projective integration in a co-evolving frame are illustrated on the one-dimensional, translationally invariant Nagumo partial differential equation (PDE). A corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is used to illustrate the coarse-grained method. A simple, one-dimensional diffusion problem is used to illustrate the scale invariant case. The efficiency of projective integration in the co-evolving frame for both the macroscopic diffusion PDE and for a random-walker particle based model is again demonstrated

    Plug actuation and active manipulation in closed monolithic fluidics using backpressure

    Get PDF
    We explore the mechanisms to actuate and manipulate liquid plugs in monolithic closed channel fluidics with porous hydrophobic walls. Applying a small pressure, as much as 10 mbar, from the rear side of the porous wall, hereafter backpressure, the inherently pinned plug is depinned and flows through downwards the fluidic. The method is reversible in that by removing the backpressure the plug sticks back again to the fluidic. 3D numerical simulations with the volume of fluid method, presented here for the first time, show that the velocity of the plug can be manipulated by adjusting the backpressure. The movement of the plug results from deformation – displacement phases which are observed in the simulation and are corroborated by experimental results, recorded inside fluidics. A simplified model based on measurements of back and front contact angles under backpressure is developed

    Plug actuation and active manipulation in closed monolithic fluidics using backpressure

    No full text
    We explore the mechanisms to actuate and manipulate liquid plugs in monolithic closed channel fluidics with porous hydrophobic walls. Applying a small pressure, as much as 10 mbar, from the rear side of the porous wall, hereafter backpressure, the inherently pinned plug is depinned and flows through downwards the fluidic. The method is reversible in that by removing the backpressure the plug sticks back again to the fluidic. 3D numerical simulations with the volume of fluid method, presented here for the first time, show that the velocity of the plug can be manipulated by adjusting the backpressure. The movement of the plug results from deformation – displacement phases which are observed in the simulation and are corroborated by experimental results, recorded inside fluidics. A simplified model based on measurements of back and front contact angles under backpressure is developed. © 2019 Elsevier B.V

    Electrospray from an ionic liquid ferrofluid utilizing the rosensweig instability

    No full text
    © 2013, American Institute of Aeronautics and Astronautics Inc. All rights reserved. A new type of electrospray technology that could be used for space propulsion was developed at Michigan Technological University. This thruster utilized an ionic liquid ferrofluid that was synthesized by suspending magnetic nanoparticles in an ionic liquid carrier solution so that the resulting fluid is superparamagnetic. The magnetic properties of the fluid were exploited to create self-assembling static arrays of surface peaks which were then amplified with an applied electric field until ion current was emitted from the array. The current and voltage profile of the emitting array was measured and its ability to self-heal after a damaging event was observed

    Computational fluid dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor

    Get PDF
    International audienceA three-dimensional Computational Fluid Dynamics model is built for a commercial Atomic Layer Deposition (ALD) reactor, designed to treat large area 20 cm substrates. The model aims to investigate the effect of the reactor geometry and process parameters on the gas flow and temperature fields, and on the species distribution on the heated substrate surface, for the deposition of Al2O3 films from trimethyl aluminum and H2O. The investigation is performed in transient conditions, without considering any surface reaction. A second CFD model is developed for the feeding system of the reactor, in order to calculate the unknown reactant inlet flow rates. The two models are coupled via a computational strategy dictated by the available experimental measurements. Results show that a purging flow entering the reactor through its loading door affects the flow field above the substrate surface and causes non-uniformity in the temperature and reactants concentration on the substrate surface. During the TMA pulse, a recirculation sets in above the substrate surface, leading to a non-uniform distribution of species on the surface
    corecore